
Machine Learning-based ALS Diagnosis Using
Gene Expression Data

Duc-Long Vu
Department of Data engineering

Posts and Telecommunications Institute of Technology
Hanoi, Vietnam

longvd@ptit.edu.vn

Hai-Chau Le
Department of Data engineering

Posts and Telecommunications Institute of Technology
Hanoi, Vietnam

chaulh@ptit.edu.vn

Abstract—Amyotrophic Lateral Sclerosis (ALS) is a rare dis-
ease that debilitates the body of a patient with few treatment
methods. The biological insight involved in ALS remains elu-
sive and faces challenges in making decisions about diagnosis.
Recently, gene expression has been valuable for overcoming
obstacles in analysis and providing accurate diagnosis out-
comes in many diseases. In this work, we presented a new
method concentrating on biomarker selections including three
different procedures of gene reduction. We retrieved datasets
and conducted differential expression analysis to identify the
gene markers that vary significantly. We then apply filter and
embedded methodology for gene selection with the Maximum
Relevance Minimum Redundancy (MRMR) followed by the least
absolute shrinkage and selection operator (LASSO) regression.
Various machine learning algorithms corresponding with a set
of gene combinations are then estimated using a series of cross-
validation procedures. The optimal gene subset corresponding
with the machine learning algorithms is then validated separately
on the testing dataset and considered the best model based on
the receiver operating characteristic (ROC) curve. Finally, a
combination including 22 potential genes with Logistic Regression
algorithms is considered the most effective method for diagnosis
of ALS with an AUC score of 87.90% which is dominant in
comparison with other current methods.

Index Terms—Machine Learning, Feature Selection, Gene
Expression, Amyotrophic Lateral Sclerosis, Biomarkers.

I. INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is considered a rare
disease that tremendously affects primary neurodegenerative
and leads to dysfunction of the human motor system. Accord-
ing to the recording in Europe, among 100,000 individuals,
the number of people dealing with ALS varies between 2 and
3 [1] and the prevalence is between 5 and 8 in 100,000 cases
[2]. The ALS Therapy Development Institute also proposes
that around 450,000 people in the world are affected by ALS.
Although a common underlying cause hasn’t been identified
for all variations of ALS, it is expected that the frequency of
the condition will increase over the next few decades leading to
the emergence of efficient methods for the discovery of drugs
and treatment methods [3]. Besides, due to the inconsistency
of the clinical and genetics of ALS, there are considerable
differences between the liability profile, hence flexible indi-
vidualized care strategies are required in clinical treatment.
Additionally, the requirement for personalized pharmaceutical
therapies would also be considered [4].

While a definitive cure for ALS remains elusive, managing
its symptoms can substantially enhance the quality of the
patient and extend the survival for those impacted by the
condition [5]. Due to the diagnosis of ALS occurring with
a considerable delay, many patients miss the opportunity for
early treatment which affects a lot to the development of
this disease [6]. In the study [7], the author reveals that
replenishment of NAD+ can significantly improve the clinical
features of patients with ALS and lead to a potential method
for treatment in ALS [8]. These reasons underscore the life-
saving potential of effective methods and tools for accurately
predicting the prevalence and occurrence of ALS.

In recent years, the world witnessed an explosion with
the increasing of Machine Learning (ML) algorithms, and a
large number of research work has been done using ML for
diagnosis and prognosis of the condition of ALS. However,
the current works are usually only applied to small clinical
data, power calculation, or statistical estimation which do
not reveal a lot of information about ALS and give reliable
results due to ALS consisting of massive biological function
disorders. With motivation for constructing an effective model
for the diagnosis of ALS, many scientists have been applying
machine learning, and deep learning techniques to address this
obstacle. In [9], the author proposed a method using biomed-
ical images with signal processing techniques to identify the
imaging features that are related to ALS. The feature selection
technique followed by a cross-validation procedure using the
Logistic Regression method is also considered to provide
acceptable results. Moreover, in [10], the authors proposed a
noble method using combined image metrics for developing a
diagnosis model that the model performance relies only upon
clinical features [11], [12] with an average score in accuracy
reaching 90%. However, the recent model faces limited data
size, and a lower true positive rate but dramatically increases
the false negative rates. This issue could be explained by the
unbalanced of the samples in the ALS dataset as a rare disease.
Besides, the more practicals need to be studied to provide
more information to develop a robust model of diagnosis and
leverage the treatment of ALS.

Moreover, ALS is also observed in approximately 5-10 %
of cases that have a family history of the disease. The majority
with around 90% of ALS patients experience in condition



without any family history. In [13], [14], the author reveals
30 genes contributed significantly to ALS, and some mutation
genes are also associated with ALS. Despite the knowledge
of ALS, the trustworthy causes and signature mechanisms of
this disease are a mystery. A vast of the current effort in
analyzing the genomic data is to identify the most effective
biomarkers related to ALS and capable of explaining the
pathogenic mechanism of this disease. Nevertheless, despite
the development of genomic technology and the variety of
genomic datasets, the current research on this area for ALS
disease has witnessed a shortcoming. Leveraging the efficiency
of ML and DL, in [15], the author proposed a noble method in
a proposed noble method using Capsule Network and Principal
Component Analysis (PCA) for developing a diagnosis model
for ALS based on individual genotype profiles with remarkable
results. Additionally, relying on the gene expression data of
ALS patients, combined with the WGCNA and LASSO regres-
sion algorithm, the author of [16] identifies a combination of
five genes that is significant to the developed diagnosis model
for ALS. In [17], 850 genes and 468 principle components
were identified as the potential biomarker for ALS diagnosis
using S algorithm. Moreover, using several classification mod-
els, the expression-based model from [18], does not provide
sufficient results in discriminating between ALS with ALS-
mimic disease. Therefore, it can be inferred that the utilization
of blood gene expression markers for predicting ALS patients
yielded insufficient results. Besides, all the studies above also
require a complex method for identifying ALS biomarkers and
constructing a potential diagnosis model. These results raise
questions about revealing the biological insight from the gene
expression profile, and how to perform an effective model for
identifying the important biomarkers for ALS, but with less
effort in the computational aspect.

Motivated by the obstacles above, in this work, we proposed
a novel approach based on data analysis to select the optimal
genes subset which can contribute significantly to constructing
the diagnosis model with less complexity but maintain the
overall performance. We propose a sequential gene selection
procedure that leverages the advantages of three feature se-
lection algorithms to point out the optimal set of genes that
can be used to create an effective model for diagnosing ALS.
Additionally, we use the two largest datasets considered the
best resource available for identifying ALS biomarkers from
the peripheral blood of ALS patients and control for this
research.

II. DATA AND PREPROCESSING

A. Data source

Since the limitation of the source of the gene expression
publication dataset for ALS disease, in our paper, we use only
the dataset GSE112681 The dataset GSE112681 comprises
information from datasets GSE112676 and GSE112680, both
obtained from the GEO database [18]. These datasets originate
from gene expression profiling of whole blood. The data is
gathered using two distinct platforms: Illumina HumanHT-12
V3.0 and HumanHT-12 V4.0 expression Bead-Chip arrays.

The expression values of two datasets are then extracted by
applying the GEOquery R package. Besides, the information
of samples is extracted from the series matrix file. There are a
total of 1042 samples including both ALS (397 patients) and
normal control (645 people) in two datasets. It is noteworthy
to inform that, in our work we only considered the analysis
in gene expression of control and ALS patients, so 75 ALS-
mimic diseases in GSE112680 are excluded.

B. Filtering of probes and data preprocessing

In both datasets, we collect and analyze the data from the
raw data downloaded from the GEO database. The probes in
raw data that met all the following criteria were eliminated:
(1) the probes and those with no specific symbol; (2) the
probes not corresponding to the genes symbol. The microarray
file annotation file appropriate for each platform was used
for mapping the probes with corresponding gene symbols.
The probes associated with multiple gene symbols were re-
moved while the average values of the expression values were
calculated for genes that corresponded to multiple probes.
The gene expression data with appropriate gene symbols is
then considered as the input values for further analysis. It is
noteworthy that, due to the differences in the representation
platform of the two datasets, only the gene symbols included
in both datasets are considered in this work. The expression
data in two datasets with annotation were combined for the
following step.

We used the limma R package to determine differential
expression genes with Benjamini-Hochberg (BH) as the cor-
rection method. The fold-change value relative to ALS indi-
cates that the up-regulated genes are those whose expression
is higher in the ALS samples compared to the Depression of
the same genes in the CON samples. The expression values
of selected genes are based on the fold-change and the p-
value then rescaling into the range 0 to 1 using the min-max
normalization algorithm. Then, combined data is divided into
two parts named training and testing data with ratios of 80%
and 20%, respectively. We also note that the proportion of the
ALS samples and Control samples in two partitions are the
same.

III. METHODOLOGY

In this work, our proposed method is shown in Fig.1
includes three main stages. Firstly, Data preprocessing is im-
plemented for removing the outlier data, and cleaning the gene
expression data becomes more efficient for further procedure.
Here, the number of the gene markers drops significantly by
the differentially expressed analysis process. Secondly, two
algorithms of feature selection are performed to point out the
most informative genes that are important for the diagnosis
of ALS. Then, the construction of different gene subsets was
produced by the Sequential Forward Feature Selection (SFFS)
algorithm based on the selected genes. There is a 5-fold
cross-validation procedure then performed for each machine
learning algorithm appropriate with the gene combination to
reveal the best gene combinations and machine learning model



for diagnosis of ALS. Lastly, the proposed gene combination
is validated on the testing set with several machine-learning
models in the Model Estimation phase. The gene subset which
is adopted as the input of a classifier producing the highest
validation diagnosis performance in terms of AUC score, is
chosen as the proposed gene subset and algorithm for ALS
diagnosis.

We use five machine learning algorithms in this work, which
are K-nearest neighbors (KNN), Extreme Gradient Boosting
(XGB), Random Forest (RF), Support Vector Machine (SVM),
and Logistic Regression (LR) [19]. These machine-learning
algorithms are used to estimate the efficiency of the proposed
gene combination as well as play a key role in developing a
diagnosis model.

Fig. 1. Flow method

A. Gene Importance Analysis

We introduce a novel approach to analyzing the importance
of parameters in constructing a sufficient and accurate di-
agnosis model for ALS. Motivated by the efficiency of the
feature selection method in extracting the important features
(in this scenario the genes) for deploying the machine learning
model, a sequential filter, embedded, and wrapper methods
are considered to produce the most value genes which are
significantly related to ALS. Firstly, we use the MRMR
method to evaluate the correlation between the differential
expressed genes and the relevance between individuals with
the target variable. Then, the LASSO regression algorithm
is used to calculate the coefficient values of the genes for
reducing the redundant features. We briefly explain the two
algorithms in the following section.

1) Maximum Relevance Minimum Redundancy (MRMR):
The MRMR method is a feature selection technique designed
to choose a subset of features that optimizes the relationship
with the target variable, while also minimizing redundancy
among the selected features. There are two main parts of
MRMR Relevance (R) and Redundancy (D).

Assuming there are a total of S features in the set of features
Xi(i ∈ 1, 2, ..., S). Its feature importance (Mi) based on the
MRMR criterion can be expressed as:

M(i, S) = R(i)− αD(i, S) (1)

with α as the weighting parameter that the balance trade-off
between relevance and redundancy.

2) Lasso Logistic Analysis: The LASSO algorithm is a
linear model that combines logistic regression with L1 regular-
ization. It models the relationship between the features and the
binary target variable using the logistic function. With the L1
regularization, the objective function of the model encourages
small coefficients and consequently, sparsity in the model. In
mathematic formulas, the L1 regularization is the sum of the
absolute values of the coefficients:

L1 = λ

p∑
j=1

|wj | (2)

with λ as the regularization parameter that controls the regu-
larization strength. Higher λ leads to more coefficients being
become zero; p is the number of features.

The goal is to find the coefficient values w that minimize
the LASSO objective function. This can be done using the
optimization technique, in this case, gradient-descent methods.
The L1 regularization encourages some feature coefficients to
become zero, leading to feature selection. Features with the
coefficient is zeros are effectively excluded from the model,
resulting more interpretable and potentially simpler model.

B. Gene Combination Construction

The remaining genes after two phases of feature selection
are considered the most informative genes for developing a
machine learning model. Based on the absolute coefficient
value, we rank the genes from highest to lowest and pro-
duce the ranking table. Following by applying the Sequential
Forward Feature selection (SFFS) procedure, we constructed
the gene combination from the ranking table. Particularly,
an ordered list of genes is formulated, encompassing diverse
gene permutations. The initial permutation comprises the gene
situated at the peak of the ranked list, characterized by
the utmost significance value. Subsequently, the subsequent
permutations encompass pairs of genes, with the first one
being the highest-ranked gene and the second one occupying
the second position in the list. This progression is outlined
in Algorithm 1, detailing the approach for generating distinct
gene combinations.

C. Diagnosis Model Development

All the gene combinations are then fed into different
machine-learning models to identify the optimal learning and



Algorithm 1 Gene Combination Generation
(1) Ranking Genes based on absolute coefficient score
(2) Gene combination generation:
- Number of potential gene: n
- Combine of genes subset: S = [];
- Initial number of gene in subset: g = 1
Repeat

• Construct genes subset based on a gene coefficient table
from 1 to g;

• Append the gene subset to S; g = g + 1

Until g = n;

structure parameters on the training set. There are five machine
learning models constructed with n combinations. Hence, there
are a total of 5 x n models considered. Hyper-parameter tuning
is a requirement for each classifier with an appropriate gene
subset to overcome the overfitting problems. Additionally, the
grid search with k folds cross-validation process is considered
in this stage to address the optimal parameter for all models.
Furthermore, the optimal gene subset corresponding with
the classifier that produces the best result is then evaluated
performance on the testing set.

D. Model Evaluation

The optimal gene subset, which is the output of the model
development phase, is then estimated for the diagnosis perfor-
mance on the testing set. Different ML algorithms are then
trained and tested on the training set and testing set using
the optimal combinations. These models utilize the identified
gene combinations as inputs for accurately diagnosing ALS.
The algorithms for diagnosis are chosen based on the superior
performance exhibited by the corresponding machine learning
models.

IV. EXPERIMENTS AND RESULTS

We use a number of evaluation metrics including accuracy
(Acc), sensitivity (Se), specificity (Sp), and AUC-ROC score
(AUC) to estimate the results of our ML model. The AUC
score and Accuracy are the main metrics we use to measure
the performance of the optimized model. Sn and Sp were used
to evaluate the effectiveness of the model in addressing the
ALS and control samples correctly.

A. Differential Expressed Gene Analysis

The gene expression and annotation data were retrieved
and then normalized using the gcRMA method in R package.
After, the probe filtering and gene symbol mapping process,
a huge number of gene markers and probes in both data
sets were eliminated. In the last filtering step, GSE112676,
and GSE112680 datasets included 16878 and 16837 genes,
respectively. However, as we mentioned before, only genes
that appeared in both datasets are considered for further
analysis hence, finally 16833 genes are identified in both gene
expression sets.

The combination of two datasets is then normalized and fed

Fig. 2. Genes LASSO Absolute Coefficient

into a differential expressed analysis procedure. Surprisingly,
by setting the threshold for the absolute fold change ≥ 1.5
and adjusted p-value ≤ 0.05, only 33 genes from a total of
16833 genes were found to be DEGs between ALS and control
samples. These genes are ranked based on the absolute fold
change value and then fed into the following gene selection
procedure.

B. Gene ranking

From 33 genes DEGs received from the differential expres-
sion analysis, two layers of feature selection algorithms are
applied to obtain the final gene ranking table.

1) MRMR score: We implement the MRMR feature selec-
tion algorithm by using the Scikit-learn library using Python.
In our work, the mutual information between the feature are
also calculated based on this library to receive the Redundancy
and Relevance value. From 33 genes, the MRMR score of each
feature was obtained and ranked from the lowest to the highest.
The gene symbol YPEL5 shows the lowest MRMR score with
results approximate zeros, so they are eliminated. After this
first filter process, only 32 genes are remaining.

2) LASSO coefficient: The combination including 32 DEGs
then fed into the LASSO logistic model to estimate the
coefficient values for individual genes. The hyper-parameter
tuning for this model is necessary with hyper-parameter C
and λ. The 5-fold cross-validation procedure was also applied.
The coefficients for each feature in the logistic model with
the L1-regularization are illustrated in Fig.2. Clearly, three
genes PJA2, PDSS2, and PCNP show the coefficient approx-
imate zeros, in other words, these genes are considered non-
informative or less important for classification tasks, so we
ignore these genes. Consequently, after two phases of feature
elimination, there are 29 genes remain the most important
features for developing the ALS diagnosis model. Based on
the absolute coefficient, we ranked the gene symbol from the
highest to the lowest to construct a gene ranking table for
further experiments.



Fig. 3. AUC score of five ML algorithms on the testing set with optimal
gene set

C. Diagnosis Model Development

The outcomes of the gene ranking process determine the
optimal number of m genes to be selected. This is achieved
by utilizing a chosen classifier and supplying it with a subset of
ranked genes. The process starts with the highest-ranked gene
and proceeds downwards, ultimately selecting m genes that
yield the highest classification score. Based on Algorithm.1,
there are a total of 29 gene combinations that are estimated
to figure out the most effective gene group. A total of 5
ML models and 29 gene subsets are considered in this work.
Hence, there are a total of 145 models constructed to search
for the best gene combination corresponding with the machine
learning model. These classifiers estimated their diagnosis
efficiency on the training cohorts with a ten times five-fold
cross-validation procedure. Table. I shows the results of five
models, which produce the highest AUC score corresponding
to each associated with the highest classification accuracy
achieved through the optimal gene combinations. It is worth
highlighting that the selection of each model in Table. I was
made after comparing classification accuracies across 145
models employing gene combinations. Notably, the mean val-
ues align with the most efficient gene combination identified
by the Logistic Regression (LR) classifier. As a result, the
selection of these 22 genes as the most informative gene
subsets relevant to ALS is substantiated.

TABLE I
MODEL VALIDATION RESULTS

Model #genes Acc (%) Sn (%) Sp (%) AUC (%)
LR 22 82.28 ± 3.80 72.86 ± 5.46 88.94 ± 3.24 87.90 ± 4.37

KNN 8 77.18 ± 2.20 62.43 ± 5.64 86.2 ± 4.37 84.25 ± 2.65
SVM 27 81.86 ± 2.92 71.91 ± 5.09 87.98 ± 2.58 87.72 ± 4.20
RF 11 80.18 ± 3.69 69.06 ± 6.79 87.00 ± 3.00 84.94 ± 4.06

XGB 25 82.95 ± 1.62 74.75 ± 3.40 87.98 ± 1.89 86.69 ± 1.77

D. Model Validation

To demonstrate the effectiveness of the optimal gene subset,
we evaluate the performance of the diagnosis model on the
testing set. Particularly, five ML model was trained on the
training set and then estimated precisely on the testing set
separately. It is noteworthy to clear that all five machine
learning models are also optimized with a grid-search method
nested by a five-fold cross-validation procedure for searching
optimal hyper-parameters for 22 gene combinations. Table.II
shows the detail of the ML classifier on the testing set. The
diagnosis performance of the LR model is still the highest
compared with another ML algorithm in all evaluation metrics.
Additionally, the ROC-AUC curve is also illustrated in Fig.3
with the AUC score being round with two numbers. Moreover,
we also compare the results of our work with the two latest
studies which to our best knowledge given state-of-the-art
results using similar ALS genome datasets in Table. III. As
a result, we suggest the combination of 22 ALS-related genes
corresponding to the LR model as the most effective method
for diagnosis of ALS disease - one of the most complicated
and lacks research in the genome which is considered as a
signature biomarker of ALS.

TABLE II
MODEL ESTIMATION RESULTS ON TESTING SET

Model Acc (%) Sn (%) Sp (%) AUC (%)
LR 81.81 76.25 85.27 86.75

KNN 74.16 62.50 81.39 81.06
SVM 79.42 71.25 84.49 85.29
RF 78.46 70.00 83.72 84.48

XGB 79.42 72.50 83.72 85.62

TABLE III
COMPARISON OF THE PROPOSED ALGORITHM TO EXISTING WORKS

Study Acc (%) Sn (%) Sp (%) AUC (%)
Proposed
algorithm 82.28 72.86 88.94 87.90

[16] - - - 86.5
[17] 87.00 86.00 87.00 -

V. DISCUSSION

Our proposed ML method can identify the most infor-
mative gene markers that are significantly related to ALS
disease. The efficient diagnosis model is developed using
Logistic Regression algorithms and our work addresses the
complicated processing and accuracy problem of the ALS
diagnosis models. A potent combination of 22 genes has been
chosen as the ultimate gene subset to perform remarkable
results in the diagnosis of ALS. Our proposed gene subset
is significantly small, compared with the existing work like
in [17] with 850 genes, and our model with the selected
gene combination provides better performance compared to
the model given in [16]. The reason behind the successful
identification of such a gene combination is the utility of the
three procedures of gene reduction that summarize the pros



of filter, embedded, and wrapper feature selection algorithms.
Moreover, the method of analyzing differentially expressed
genes has gained widespread usage for the examination of
gene expression profiles. By applying this method as the first
gene elimination procedure, only 33 genes were chosen from
16833 genes which contributed significantly to analyzing the
disease. Based on the differential expressed gene subsets,
the MRMR algorithms interpret the relationship between the
genes with the outcome of the genome profile as well as
the correlation between individual genes. The lower score
indicates the less important genes, so we can eliminate the
genes that are not sufficient for ALS diagnosis. Additionally,
the LASSO LR model was also considered in our work for the
calculation of the coefficient of the logistic model in predicting
the disease. These values are assigned for each feature as the
linear combination with the input data (i.e. gene expression
data) for the objective function in developing the classifier.
Intuitively, the closer to zeros, the more the appropriate genes
to this coefficient are less efficient for the diagnosis model.
Consequently, combining two feature selection approaches can
significantly reduce unimportance genes and retain the most
informative genes which are useful for developing a diagnosis
model.

On the other hand, the SFFS algorithm is applied for
searching the optimal gene combination from the selected
genes for defining the classifier. To develop an innovative
algorithm for diagnosing ALS, various ML models have been
employed to assess the diagnostic efficacy of the chosen
gene combination. The simulation results indicate that our
proposed model using LR with the optimal subset of 22 genes
outperforms the existing works on ALS diagnosis using the
same genome dataset. Moreover, a compact set of genes,
identified using the gene selection procedure outlined, serves
to emphasize the viability and efficiency of the suggested
algorithm for potential clinical implementations.

VI. CONCLUSION

We proposed an efficient approach using machine learning
combined with gene analysis to develop a robust model for the
diagnosis of ALS. The combination includes 22 genes deter-
mined using the sequential of three gene selection algorithms.
We leverage the efficiency of MRMR and LASSO algorithms
in the feature selection procedure to reveal the most important
genes to construct a diagnosis model. Then, a sequential for-
ward feature selection method is applied to search for an opti-
mal gene combination that is suitable for the machine learning
algorithm. The selected 22 genes combination combined with
the LR algorithms show significant results in diagnostics and
robustness with an average AUC score of 87.9%. In addition,
the effectiveness of our method as well as the intelligent
diagnosis model also demonstrated as superior to the result
of some novel studies. Our research phase proposed a robust
method in gene selection and constructed a precise predictive
model for ALS disease, which has the potential to be utilized
as a foundation for both clinical diagnostic testing and in-depth
biological mechanistic investigations.
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